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Abstract. Based on a previously postulated entropy, that now becomes a particular case, we
show that there exists an infinite set of entropies, with similar properties, that reduce in a common
limit to the Boltzmann–Shannon form. The probabilities for the microcanonical ensemble and
for the canonical ensemble are obtained. The method used to construct the set is quite simple
and quite general and can be applied to generalizations of physical quantities and to other
generalized entropies. The existence of an infinite set of ‘entropies’ with, in principle, similar
properties, could be a serious drawback for the actual utility of any of them and points to their
utter uselessness unless some reason can be given for a special choice of one of them.

1. Introduction

Wehrl [1] has drawn attention to the fact that from ‘entropies’ like:

− ln f −1(Tr ρf (ρ)) (1)

or

f −1[Tr ρf (− ln ρ)] (2)

(wheref is an increasing convex or concave function) and (Daróczy [2])

1

1− β (Tr ρβ − 1) (3)

we learn that mixing-enhancement (this term comes from the field of information theory, a
similar term in physics is non-extensivity) leads to the loss of information in the worst way
because all the measures of the lack of information, and not only the entropy, increase.

However, Tsallis [3] postulated a one-parameter-dependent Daróckzy-like entropy, in a
magnitude normally used in multifractals:

Sq = kB 1−∑W
i=1p

q

i

q − 1
(4)

whereW is the total number of configurations,pi are the associated probabilities,kB is some
suitable constant andq is the parameter that allows the generalization. It is not difficult to
realize that in theq → 1 limit equation (4) reduces to the well known expression

S = −kB
W∑
i=1

pi lnpi. (5)
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To obtain equation (5) from equation (4) it is possible to use a replica trick form of
expansion (as in the original work) or, even simpler, to use the L’Hospital rule for the
limits.

In [3] it was proposed for the first time that there was a connection between the class of
entropies and the properties of physical systems. Since then a great number of papers have
tried to accomplish such a task, for example: the dynamic linear response for non-extensive
systems [4], and an explanation for the cosmic background radiation [5] (see [6, 7] for a
recent and partial review). The main motivation for this proposal was that it has been known
for many years [8] that the Boltzmann–Gibbs statistical mechanics does not properly apply
to systems with special characteristics, for example, systems with no energy minimumE0,
systems where the interaction energy is comparable with the internal energy and systems with
no equilibrium states. On the other hand many functional forms for the entropy have been
proposed in several fields, particularly in information theory [9]. There are some difficulties
in Tsallis–Daŕoczy (TD) entropy (specifically, for example the necessity of imposing a cut
off on the temperature to avoid complex values of the probabilities and also the convexity
of the entropy that could lead to violations of the second law of thermodynamics for some
values of the parameterq and temperature).

Based on TD entropy and on theq → 1 (β → 1 in the notation of Daŕoczy) limit
process for recovering Boltzmann entropy, we introduce an infinite set of entropies (of
which TD becomes a particular case). The method described here enables us to obtain
such sets for some entropies. General properties corresponding to the microcanonical and
canonical ensembles are also presented.

2. The method

The simple method consists of the following. By integrating (indefinite integration)
separately with respect toq the numerator and denominator of equation (4),n − 1 times.
We obtain an ‘entropy’nSq of the form:

nSq = kB
R[q, {pi}] −

∑W
i=1

p
q

i

lnn−1 pi

P [q]
(6)

whereP [q] andR[q, {pi}] are polynomials inq and some functions of the probabilitiespi ,
that include some integration constants. However, in theq → 1 limit, as for TD entropy, we
must recover the Boltzmann entropy. For this, all the derivatives up to the degreen− 1 of
both the numerator and denominator should vanish in that limit (this condition determines
the values for the integration constants previously mentioned and completely substitutes
integration limits). From such conditions it is obvious to see that

P [q] = (q − 1)n

n!
(7)

and thatR[q, {pi}] is formed by then first terms of the Taylor series of
∑W

i=1p
q

i / lnn−1pi
aroundq = 1:

R[q, {pi}] =
W∑
i=1

n−1∑
k=0

pi

lnn−1−k pi

(q − 1)k

k!
. (8)

The numbern has no direct physical meaning (in contrast toq in TD entropy apparently
associated to non-extensivity); it is simply the number of times we have to apply the
L’Hospital rule to obtain the Boltzmann form. We shall calln the order of entropy. Note
also that in theq → 1 limit, n disappears in all of the expressions (as expected).



Boltzmann–Gibbs statistical mechanics 5273

In our notation TD entropy is thefirst-order entropy. It is also interesting to note that
for n > 1 we always pass through the TD form in the limit process to the Boltzmann form,
specifically in the(n− 1)th step.

ThennSq adopts the form:

nSq = kB
∑W

i=1

∑n−1
k=0

pi

lnn−1−k pi
(q−1)k

k! −
∑W

i=1
p
q

i

lnn−1 pi

(q−1)n

n!

. (9)

3. Some general properties

It is easy to show the positivity ofnSq in equation (9) by developing the second sum in the
numerator in a Taylor series aroundq = 1 and by writing the result in the form:

nSq = −kB
W∑
i=1

∞∑
k=n

pi

lnn−1−k pi

n!(q − 1)k

k!(q − 1)n
(10)

that is positive for anyq. Note that forq > 1 and anyn and also forq < 1 andn even,
it corresponds to an alternate series whose terms decrease withk in the absolute value, the
first term being positive. Forq < 1 andn odd, all of the terms are positive.

From equation (10) we note a remarkable property of the indexn, i.e. whenn→∞ we
recover equation (5) again!, except terms of the order of 1/(n+1) that vanish, independently
of q.

We now extremizenSq with the condition
∑W

i=1pi = 1 (microcanonical ensemble). It
is straightforward to show that it is extremized for the case of equiprobability and that in
that case:

nSq = n!kB
(−1)n−1 ln1−n W

∑n−1
k=0(−1)k(k!)−1(q − 1)k lnk W + (−1)nW 1−q ln1−n W

(q − 1)n
(11)

which recovers the particular case of TD entropy(n = 1) and that, as expected, reduces to
the Boltzmann form in theq → 1 limit for any n.

By differentiating equation (11) with respect toW it is found that forn = 1 the entropy
is an increasing function of the number of statesW for any q. For n > 1, nSq is an
increasing function ofW if q 6 1 and a decreasing function forq > 1. Whenn = 1 the
entropy is an increasing function ofW for any q but, for q > 1 the TD entropy has the
problem that, for some values of temperatures, the probabilities become complex numbers.
For n > 1 that problem is eliminated with pure physical arguments, i.e. the entropy has to
be an increasing function ofW and therefore the limitq > 1 should be dropped out.

It is relatively easy to show concavity properties fornSq by defining a mixed probability
law as:

p′′i ≡ αpi + (1− α)p′i (12)

and evaluating the quantity:

n1q ≡ (nSq({p′′i }))− [α(nSq({pi}))+ (1− α)(nSq({p′i}))]. (13)

From this expression and by using equation (10) it can be shown that forq > 0 the
quantity n1q > 0, i.e. the entropy is concave independently of n. Forq < 0, there is a
q∗[n] below which the entropy is convex(n1q < 0). For q∗ 6 q 6 0 the entropy does not
have a definite concavity. Forn = 1, q∗ ≡ 0 and forn = 2, q∗ = −0.3. We are led to think
that the only region physically acceptable (if there is any region physically acceptable, see
below) is [0,1], despite knowing that convexity can lead to violations of the second law of
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thermodynamics [10]. However, many different types of entropy are possible, for example,
in black holes [11].

In order to obtain the corresponding expressions for the canonical ensemble we now
extremizenSq with the additional condition

∑W
i=1piεi = Uq , where theεi andUq are

known real numbers. Following [3] we define:

nφq ≡ nSq

kB
+ λP ′[q]

W∑
i=1

pi − λβP [q]
W∑
i=1

piεi (14)

whereP ′[q] is the first derivative ofP [q]. By imposing∂(nφq)/∂pi = 0 ∀i, it is not too
difficult to arrive at the following condition:∑n−1

k=0
(q−1)k

k!
1−(n−1−k) ln−1 pi

lnn−1−k pi
− pq−1

i
q−(n−1) ln−1 pi

lnn−1 pi

P [q]
+ λP ′[q] + λβP [q]εi = 0 (15)

that again recovers the TD case forn = 1. Forn > 1 equation (15) represents, together with
the conditions imposed to the probabilities and to the{εi}, a system of(W + 2) nonlinear
simultaneous equations for{pi}, λ andβ (for n = 1 it is possible to obtain an explicit form
for the {pi}). In fact to obtain a general form for generating (partition) functions, could be
the main difficulty forn > 1. However, the method appears to be uniform and it is not
too difficult to see that the same relation exists between the probabilities in the TD and
the superior-order cases as between the entropies themselves. That is, the probabilities for
entropies of orders greater than 1 can be obtained by integrating (separately and as many
times as necessary) the denominator and the numerator of the exponential of the expression
for the probabilities in the TD case written in a convenient form:

pi =
[

1− (1− q) Ei
kBT

] 1
1−q
= exp

ln[1− (1− q) Ei
kBT

]

1− q (16)

where theEi are the associated energies,kB is the Boltzmann constant andT is the
temperature.

4. Remarks

The existence of an infinite set of generalized entropies with similar properties presented
in this paper recalls the question of whether any of all the existent ‘entropies’ have any
physical sense, and if so, why that one and not the others?

Properties for the casen = 1 currently appear in the literature [6, 7]. The introduction
of n > 1 should not dramatically affect the properties of the entropy found for then = 1
case within the allowedq interval. As a sign of what could be expected, figure 1 shows the
dependence of2Sq for a system with just two states; it shows the same qualitative features
as figure 1 in [3].

In our opinion any choice has to be made with care; a particular election may introduce
even greater problems than those presented in Boltzmann–Gibbs statistical mechanics, not
only from an operational point of view but also from a conceptual one.

We stress, as a final comment, the fact that the method used here could in principle
be employed for similar generalized entropies with a non-trivial limit over the Boltzmann
case. The only requirements that the initial entropy has to fulfil are: (i) in the limit of the
special value of the parameter (in our caseq → 1 ) an indetermination of the type 0/0 or
any other analogous must be obtained; (ii) each of the terms that shield the indetermination
must have a primitive.
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Figure 1. Dependence ofnSq for n = 2,W = 2 and some values ofq. Essentially the same as
in figure 1 of Tsallis [3]. The values ofq are plotted on the corresponding curves.

It is not possible to apply the aboven-extensionto the Ŕenyi [9] entropy, related to the
TD one by the formula

SRq = (1− q)−1 ln[1+ (1− q)STq ] (17)

because it fails to fulfil the requirement on integrability. In contrast to what may be though,
this is a point in favour of Ŕenyi’s entropy because of its uniqueness.

On the other hand theq ←→ 1
q

invariant TD-like-entropy recently devised by Abe
[12]:

AbeSq = −kB
∑W

i=1p
q

i −
∑W

i=1p
1
q

i

q − 1
q

(18)

fulfils the two requirements and it is not too difficult to find an extension of the type in
equation (9) for it. Let us stress that in [12] it was also obtained that the allowed values for
q are those between 0 and 1 but there the reason was purely mathematical, the 1< q <∞
range can be mapped on the 0< q 6 1 interval.

In summary, we have presented a method to obtain a set of entropies from agerminalone
that recovers the Boltzmann entropy in some non-trivial limit. The method was illustrated
using as a starting entropy the TD one because it has been believed to present some physical
applications. The method goes well beyond and offers an original tool for generalizations
of other physical quantities given that they fulfil some conditions. It can be used for the
generation of infinite sets of entropies in many of the cases studied in the extensive and
interesting review of Wehrl.

Whether some generalization is of interest can be evaluated only through applications.
The aims of this work were the presentation of the method (that in our believe has some
subtle connection with functional derivatives) and, fundamentally, to call the attention on
the non-uniqueness of TD-like entropies (that could be the reason for serious drawbacks in



5276 A R R Papa

the utility of those types of entropies). Actually, if it can be shown (as was done here) that
entropy functionals postulated by other authors are merely special cases of a one-parameter
family, this proof renders them utterly useless unless a reason can be given for the special
choice of parameter (which has not been the case until now). As a consequence, we have
not searched for applications. However, many scientists appear to believe in that type of
formalism and the casen = 1 has been explored intensively during the last 10 years. Some
other examples of this research are the thermodynamics of anomalous diffusion [13], the
statistical-mechanical foundation for the ubiquity of Lèvy distributions [14] and a solution
for the solar neutrino problem [15, 16].
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[2] Daróczy Z 1970Inf. Contro.16 36
[3] Tsallis C 1988J. Stat. Phys.52 479
[4] Rajagopal A K 1996 Phys. Rev. Lett.76 3469
[5] Hamity V H and Barraco D E 1996Phys. Rev. Lett.76 4669
[6] Curilef S 1996Z. Phys.B 100 433
[7] Guerberoff G R and Raggio G A 1996Phys. Lett.A 214 313
[8] Terlietski Y P 1966Statisticheskoi Fiziki(Moscow: Nauka) (in Russian)
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